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{{E 1 INTRODUCTION

! This report discusses the work accomplished during the AFOSR Grant
AFOSR-84-0203, entitled "“The Influence of Electric Current on Crack Propagation in

K & Therma! Fatigue Tests.” The goal of this work was to develop a method for

.:Q: estimating the crack tip stresses that result from a non-uniform temperature

'

,"' distribution near the crack tip that occurs when resistance heating is used to
thermally cycle fatigue specimens.

:"

"ﬁ A problem associated with thermal fatigue tests is obtaining sufficiently rapid

:... thermal cycles in the test specimens. |In order to overcome this problem, large

o'l electric currents are often used to cyclically heat the samples since this mode of

LA heating can be easily controlled and rapidly cycled. However, in the presence of an

,,f'_:" open crack an otherwise uniform electric field is disturbed, causing a 1vrsingularity

.,_.;._ in the current which results in localized heating at the crack tip. Thus, cracked

- thermal fatigue specimens which are electrically heated have a distinctly non-uniform

temperature field with the crack tip acting as a heat source in the material.

R
A
,:} Recently, experiments were conducted through a program sponsored jointly by the
'_:"- Air Force Wright Aeronautical Research Laboratories and the Defense Advanced

Research Projects Agency. The aim of the experiments was to address the impact of

simultaneous variations in temperature and stress on crack growth predictions [1].

il
<3

K : Temperature variations were achieved by application of a 60 Hz a.c. current.
~"’ Comparison of results obtained on samples which were thermomechanically fatigued
i out-of-phase (temperature and load cycles were 180° out of phase) to those fatigued
‘-‘ in-phase showed a significantly greater crack growth associated with the in-phase
:t s testing, while no discernible difference between the crack growth rates of out-of-
;’3 phase and isothermally tested samples was observed. An additional outcome of the
s

testing is a distinct difference in crack growth behavior between specimens tested
out-of-phase and those tested either isothermally or in-phase. The out-of-phase
samples exhibited significant shear lips while those tested isothermally and in-phase

exhibited flat crack faces.

A possible explanation for the anomalous crack growth behavior is that thermal
stresses caused by the resistance heating were not taken into account in calculations
of stress intensities. It is the goal of this work to estimate the contribution of the
electric field to the stress intensity as induced by the associated quasi-static

temperature field to estimate the magnitude of its contribution under test conditions.
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The problem of analytically determining the mechanical state of the crack tip in an
electrically heated specimen requires the solution of two interrelated problems:
determining the disturbed electric field in the crack region from which heat
generation can be calculated and secondly, using the heat generation as a heat source
in the thermoelasticity problem to calculate the stress field.

The electric field problem has been of interest in fracture mechanics because of its
role in the widely used electric potential technique for monitoring fatigue crack
growth. Analytical, experimer]tal and numerical procedures have been developed to
determine suitable calibration curves which relate the potential drop across the crack
to the crack length, see, for example, references [2-6]. The analytical expressions
generally use the analogy of fluid flow around a flat plate and a mapping technique
such as the Schwarz-Christoffel technique used in the present analysis [7].

The thermoelastic problem is more complex. The estimation of thermoelastic
stresses induced by a heat source at the tip of a crack requires determining the
solution to Poisson’s equation to obtain the stationary temperature field and the
solution. to the nonhomogeneous biharmonic equation to obtain the stresses due to
the temperature field. The latter part uses the Duhamel-Neumann analogy and
associated modified Airy stress function to separate the nonuniform temperature
distribution from the elasticity problem [8-10].

The first work dealing with the two-dimensional thermal stress fields associated
with cracks was published by Florence and Goodier [11) and Sih [12]). The method
of complex representation of the elastic state was used to derive the theoretical
stress intensity factors in infinite two-dimensional cracked regions for both the
symmetric and antisymmetric problem classes. Sih gives the thermal stress
components near the crack tip (for the geometry in Figure 1, neglecting higher order

terms) as
K, 0 ] 34 K, 0 ] 36
o = —= cos — (1 - sin — sin —) ~ == sin — (2 + cos — cos —) (1
x /2 2 2 20 V2
K, 0 ( 0 30) K, ] ] 36 2
=z —= cos — (1 + sin — sin —) + sin — cos — €0S —
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where
2 Re[A] {(4)
K, = — Re
1 \/’;
is the symmetric stress intensity factor,
K, = = Im[A] (5)

2 Vo

is the antisymmetric stress intensity factor and A is a complex constant which
depends on crack configuration and the form of the prescribed temperature contraints.

These expressions are identical to the general elastic crack-tip stress field given by
Irwin [13] for traction boundary condition problems. With some manipulation, the
corresponding stress distribution in terms of polar coordinates can be written using
identities given by {14] as:

K, ® 6 38) K 5 0 3 30) )
Ur = m? cos —2 cos 2 ——4ﬁ- sin — sin —2
3 /) 30) K 3 ) 30) )
-— —_) - —_ J—
0’0 4‘/._r coSs Ccos 4/- sin 2 sin 2
l<‘l ( 6 38) K2 ( 6 3 38) @)
T H Y H —_) ¢ —£_ —_ * -—
fre «/z-f sin 2 sin 2 4\/2—" COS 2 cos 2

where K1 and K2 are as defined above.

An alternative formulation for this class of problems was presented by Bapu Rao

[(15] for determining the state of thermal streses in an insulated crack in an infinite
thin plate subjected to uniform heat flow. In this case, both the stationary
;‘a: temperature and stress problems were formulated in the elliptic coordinate system
‘~.':: and the solution developed completely in elliptic coordinates using biharmonic

l' l‘. u,\n'n,,‘x.ln‘u
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functions and then the results were transformed through a series expansion to polar
coordinates with the crack tip as the origin. The final results obtained for the local
stresses at the crack tip in polar coordinates agree completely with those obtained
by Sih. It is noted that the real parts of the stress field are identical to the singular

terms of the Williams’ eigenfunction relations expressed by Torvik [16,17].

Experiments performed by Svoboda [18] showed good agreement between the
stress field corresponding to uniform heat flow presented in [12] and experimental
data. The test specimens used were made of plexiglas since this material is
essentially brittle, can be prepared easily and is relatively isotropic. In this case,
the complex constant, A, corresponded closely to that obtained by Sih for the

antisymmetric, uniform temperature field case:

iGa a sin y
As—————— o VT (9
(1+v)

where < is the thermal expansion coefficient, v is an elastic constant (vo = 3 - 4y,
plane strain, v, = (3 - vM(1 + v), plane stress), a is half the crack length, and VT is
the undisturbed temperature gradient directed at an arbitrary angle y with respect to

the crack axis.

Thus, estimating the stress field induced by electric current flow around a crack
reduces to determining the coefficient of the singular term in Williams' eigenfunction
series caused by the symmetric temperature field induced by the electric current. In
addition, the solution to the elasticity problem must satisfy appropriate boundary
conditions. In the problem considered herein the boundaries will be considered
traction free, consequently, any stresses that are calculated exist in addition to those

induced by mechanical loading.

Because of the complicated form of the boundary conditions in elasticity problems,
closed-form solutions to problems of cracks in finite regions are rarely obtained.
Several investigators have studied the problem of thermoelastic stresses due to
various temperature fields in cracked regions. Konishi and Atsumi [19] used the
method of integral equations to numerically solve the antisymmetric uniform heat
flow/insulated line crack problem for a semi-infinite strip with the crack paraliel to
the surface. Their results revealed a stress intensity factor proportional to the
temperature gradient times the crack length to the 3/2 power, consistent with Sih's

result.
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':: Sekine [20,21] also studied the two-dimensional insulated line crack/uniform t.meat
‘ flow problem in a semi-infinite strip with the crack arbitrarily oriented. In [20], the
:. temperature was prescribed on the surface of the crack and the crack was modelled
_,:f as continuous distributions of heat sources and edge dislocations. Singular integral
f}: equations were derived and the solution obtained is in the form of the product of
e the series of Tchebycheff poiynomials and their weight functions. In [21], the
Eo. corresponding problem for a thermally insulated line crack was solved by introducing
f‘; a continuous distribution of sources of temperature discontinuity rather than that of
.‘::_‘: heat sources. Similarly, Tchebycheff polynomial series were obtained. The
Rl coefficients of the polynomials were determined by solving the set of linear
algebraic equations. The stress intensity factors for the symmetric and
:.:::: antisymmetric types were numerically evaluated and compared graphically. The
g“','.' results for the limiting case when the crack is situated extremely far from the
Tl surface are, again, in complete agreement with Sih. The results for the case when
.;.'! the uniform heat flow is perpendicular to the plane of the crack are in agreement
Ej; with Konishi and Atsumi.
e
e Other geometry and temperature field two-dimensional crack problems have been
studied. Sekine [22] also studied the problem of a heated bounding surface and
'_"::: solved it numerically again using singular integrali equations and Tchebycheff
'{\::: polynomials. Tweed and Lowe [23] used transform techniques to reduce the general
:'.E:: problem of a crack in a half-plane to that of solving integral equations. The point
.'. source problem, was solved numerically for a hollow cylinder of infinite length by
Herrmann and Kuemmerling [24] by using singular integral equations. They
emphasized that for cracks of large length where the surfaces strongly influence the
stress intensity, this numerical method is inappropriate and suggested using finite-
element or the well known J-integral (a note on the use of the J-integral for thermal
stress problems is in [25]).

Finally, Sumi and Katayama [26] studied thermal stresses at crack tips in finite
plates. Their results, for both symmetric and antisymmetric cases were obtained by
evaluating the unknown coefficients in the eigenfunction series using a modified
mapping collocation method.

The role of electric current in thermo-mechanical fatigue tests has previously not
been established. The presence of the crack causes a singularity in the electric
current which, because of resistance heating, induces an even more severe singularity
in the heat flux at the crack tip. This singular heat source can lead to significant

S Ty O e o D L R Lo 0 B 0T T




,-..;
]
%)
«
,l
X’ 6
. \/
58
K
: temperature gradients which are not being taken into consideration by temperature
R measurements made at some finite distance from the crack tip. Thus, one goal of
. the current work is to establish the magnitude of the temperature gradient near the
O crack tip in order to estimate errors that can occur in measuring crack tip
\J‘_--
temperatures. The temperature field that results from the singular heat flux also
w? gives rise to thermal stresses which load the crack tip. These stresses will affect
- how the crack propagates. Thus, a second goal of this work is to estabtish a
pe. =,
_-f\:\ method for estimating the crack tip stresses that are induced by the current/crack
;::‘ interaction.
T4
In order to establish these estimates of crack tip temperature and stresses in a
:“ form which is easily applicable to a variety of materials, the problem is simplified in
-. d . . . .
-::. the following manner, enabling relatively simple closed form solutions. The
}'} specimen which is heated electrically may have the edge crack geometry of Figure 2.
,h" . 13 . . .
‘: B The problems that will be analyzed will be concerned with the circular subregion (F!a
n.- of Fig. 2) of radius 'a’ which surrounds the crack tip. The electric potential in this
-.“.
j region is assumed to be the same as that which occurs for a crack in an infinitely
A wide plate. The current terms that are singular are extracted from the infinite plate
Y
solution by representing the solution in terms of the eigenfunctions associated with
- the cracked circular plate. The temperatures in the cracked circular plate are
‘~'_::- calculated based on three assumptions: the temperature is a constant reference value
T
o on the outer boundary, the crack acts as a perfect insulator, and the region is heated
s only by the singular heat flux term. Once the temperature field is determined, the
~7«J . .
P, thermal stress fields in the cracked circular plate are calculated under the assumption
LM . . . . .
that its boundaries are traction free. The thermal stress problem is solved using
b :: Williams’ stress functions which satisfy the boundary conditions on the crack face
K~ and which are numerically made to satisfy the boundary conditions on the outer
boundary in a least squares sense. Only the lowest order stress function gives rise
:'-'; to singular crack tip stresses and its coefficient is proportional to K, the ’‘stress
2~;2 intensity’ parameter commonly used in fracture mechanics to assess damage. Thus,
B {
“ the solution results in a relatively- simple expression for estimating the stress
3 intensity induced by local heating of the crack tip that can occur while using ejectric
:: currents to heat thermal fatigue specimens.
D \.":
) $-
ol
2.- Stress intensity factors for some nickel alloys are calculated using the data

presented in [1], and are compared with the stress intensity factors induced by an
isothermal mechanical fatigue specimen of the same type. The results show the
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thermal stress intensity induced by the electric current is significant and is additive
and therefore can contribute to an increased crack growth rate in electrically heated

thermal-mechanical fatigue tests.

2 ELECTRIC POTENTIAL PROBLEM

The electric potentia! problem is solved for the model problem. First the electrical
potential over the circular region is established through a mapping technique. From
this, the boundary condition, E{a,f} = f(#) is determined for the circular region
containing the crack. The boundary congdition is then used to numerically evaluate
the Fourier coefficients in an eigenfunction representation of the electric potential.
This approach isolates the term that causes a singular heat flux at the crack tip. It
is the contribution of this singular heat source to the thermoelastic stress field which

will be evaluated in this report.

2.1 Formulation

Two regions are first defined (see Figure 2). Ra corresponds to the circular region
surrounding the semi-crack in which the thermoelastic problem will be solved, while

RO is the complementary region of the plate, not including R.,

R, = {nd)0<r<a -n <8<}
wW L L ¢
R°={(x,y)[0<x<2—,-5<y<5, xy ¥ R}

The electric potential problem is then stated: determine E{r,#) such that

V2E(r,8) = 0 on R, (10)

and satisfying the boundary conditions

Fla,8) = f(8),

where (@) is determined below. The condition of perfect insulation (no current flow)

across the crack requires

oE oE ) an
a’—o r,n) = a—ﬂ {r,-7) = 0 n

Finally, the potential must also be bounded at the crack tip,
LI AIR -_._._-.\-. e
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YO |E(r,8)] <M asr >0 (12)
%0
K 2.2 Determining the Boundary Condition, f(@)
ek
_‘_:j In order to establish the appropriate boundary condition, a Schwarz-Christoffel
' conformal mapping is used. From [7], the solution to the problem of uniform flow
.‘;. about a flat plate is given by the complex potential
* 4N
o 2 . 2,172
AN Wiz) = V (2% + a%) "7 = glxy) + iylxy) (13)
SN

here ¢(x,y) is the velocity potential, y(x,y) is the stream function, Vo is the far field
o velocity and z = x + iy. The fluid problem is analogous to the electric potential
A
:j.'.' problem where Vo is equivalent to EOIL (Eo is the applied voltage and L the specimen
-1' length). The electric potential is analogous to the velocity potential which is the real
:’; part of W(z). Thus, to find the potential on the boundary r = a, the complex
ot geometry in Figure‘ 3 is used:
E 6 + 8
™
) (x,y) = Re[¥] = -2 cos 1 __2 (14)
X
- where p.. p.. 6., 6, are defined by Figure 3. On the boundary r = a,
=

E R 1 0 -sinf
-y _ D4 .a
e ==\ 5+4cosfcos -L @ +—+arc cos \ ——
S AR {1 2 <\?—E—c5's_ﬂ'>]}
"-.s
= f(84) {15)
W
&
. 2.3 Solution
1.
e The solution to the electric potential problem is expressed in terms of the
"-:‘- eigenfunctions of the problem by using the separation of variables technique:
;-_‘-.' Elr,8) = R(r}a{8) (16)
i
.,,: Problem symmetry leads to
o2t 00
. Er6) = C + > C1™"? cos nlf - n)i2 (17)
.-_‘. n=1
-t
1 The electric potential within the circular region is obtained by determining the
N
,'_J‘
A "J.
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coefficients in the Fourier cosine series. Since the functions are orthogonal, the

coefficients can be evaluated directly,

”
at2 2 nlf - )
C = — cos — f(8)do (18)

-n

by performing the integration numerically. Results of this numerical integration are
tabulated in Table 1 for values of n up to 32. Neglecting higher order terms, the
first coefficient (singular current coefficient) gives an expression for potential as a

function of & and 6:

— E
Elr.8) \ 2ar -Lg cos{f - n)/2 (19)

It is this component of the electric potential which gives rise to the dominant
{singular) heat source at the crack tip and, consequently, it is the contribution of this

term which is evaluated in this report.

3 THERMOELASTICITY PROBLEM

Once the potential over the plate is obtained, the heat flux in the circular region
can be determined. From this, the thermoelasticity problem, which includes finding
the temperature field, is formulated using the Duhamel-Neumann analogy to model the
problem as one with a constant temperature field. Using this approach, an Airy
stress function formulation may be used in which the temperature field produces
surface tractions and body forces. The solution to the resulting non-homogeneous
biharmonic equation is determined using standard techniques. The solution to the
homogeneous part is represented in terms of Williams' eigenfunctions, the
coefficients of which are evaluated numerically. The coefficient of the lowest
Williams’ eigenfunction establishes the magnitude of the singular stress field at the

crack tip, and it is this quantity which we seek to evaluate.

3.1 Formulation

A. The Temperature Field
The heat flux, hir,8), induced by the current is

hir,8) = o(VE o VE) (20)
.'.,"'. ey - ‘..~',".'_’".".',.'_.'_. T At ".- LI S -
R A P S LN _-.' ey xS -. \ o .\'. \
""4- ";._3. \-_- ..._..J \_1.%. \.:;\_-Al A A O SR SR N G O .\i\ o ':_‘:L:A.\A-{A\. -




10

where ¢ is the electrical conductivity. For steady-state temperature fields, the local

temperature variation, T(r,d), is related to the heat flux by

hir.8)

V2Tir.6) = - (21)

where k is the thermal conductivity.

The temperature field must satisfy the condition of a constant reference
temperature at the edge

T=T onr = a, -2 <@ <n (22)

perfect insulation across the crack requires

oT aT

Y (r-n) = Y (r,m) = 0, 0<r<a, (23)

finally, the temperature must remain bounded in the limit as r approaches zero,

| T(r.8)] <M asr o0 (24)

B. The Stress Field

Duhamel’s analogy states that the stress field in a body subjected to a temperature
distribution, T(r,8), but with zero body force and zero surface tractions is the same
as that given by a superposition of hydrostatic pressure1

a'r=aa=-ﬂT, Tr0=0

with that given by another problem in which the same body is kept at a uniform

reference temperature but subjected to a body force with components

1 .

To satisfy equilibrium, the hydrostatic pressure field can be thought of as having body force components Fr
= B ©T/0r) and F, = BOUIB) and surface tractions having a normal component of -AT. Thus, the
superposition with the second problem yields the original conditions (zero body force and surface tractions).
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Rty and with a surface traction with a normal component of AT where

(25)

(26)

2
"‘A to plane stress.

ey The solution to this problem is solved by introducing the Airy stress function, ¢,
such that

1
+ T 27
R
D) do =-a—;2-"'ﬂT (28)

e Te*" A - —) (29)

1%y ' Stresses given in this manner automatically satisfy equilibrium. Compatibility is

satisfied if
e V% = - V2T (30)

WY where

LY

Kats aE

BALS K = {31)

rigrs corresponds to plane strain and

-
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« = agE (32)
to plane stress.

The stresses associated with the Airy stress function must satisfy the modified

traction boundary conditions:

o, = pT.7rg=00nr=a -n<f<n (33)
og = BT, 7 o = 0 on crack faces, @ =27 0Cr<a (34)
3.2 Solution

A. The Temperature Field
Applying Ohm’s law, the heat flux induced by the current is

a 2
hir,8) = o Y (EOIL) (35)

which yields the axisymmetric temperature distribution when Poisson’s equation (21)

is solved:

o a 2
Tr6) = --(E/L"(@a-r)+T (36)
Kk 2 o °

B. The Stress Field
From (30) and (36), the resulting nonhomogeneous biharmonic equation in plane strain

becomes

Ve (€ L) (37)

o

il 2(1 - v)kr

This equation is solved using superpositioning and separation of variables. The

solution to this equation (for details, see Appendix A) is

3

aE E r 00 )Y
= 92 __ (1. R
¢ T (L) . (1 + cosf) Z D r "Qn (38)
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where Qn are the symmetric Williams’ eigenfunctions which yield the relationships

é 8
_ n-2)/2 - D) 2 e tne(-1)" +2) —
g = E D r [ (6-n)cos(n-2) 3 (n+2(-1)")cos(n+2) 7 ]
8 6
- (n-2)2 . 9 e e (-1 +9) —
aq = E D, e [ {n+2)cos(n-2) P (n+2(-1)")cos(n+2) 2 ] (39)

0 0
T " z D, fn-212 [ (n-2)sin{n-2) 7 {(n+2(-1)"sin(n+2) 3 ]

C. The Stress Intensity Factor, K .
Obtaining a stress intensity factor requires finding the coefficients Dn which satisfy
the appropriate boundary conditions. The boundary conditions (see Appendix A)

require

x 0 0
Z D, an-2/2 [ (6-n)cosin-2) 2 + (n+2(-1)")cos(n+2) 7 ]

n=1
il Cor —“E (3. 2c0s0)
-ZT L_ 91 - v) cos
o0 6 6
z D, aln=212 [ {n-2)sin{n-2) T (n+2(-1)")sin(n+2) > ] (40)
n=1

aaz E

(72 Eor _F (5 ging)
% L s1-wn<"

The the stress intensity factor, K1, is defined by

K, = :i:O\ 271 g4 evaluated at 6 = 0. | (a1)

A N TR B ARG iy |
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From (39),
K, = 4\501.

From Appendix A,

vt (E°)2 _E (3d, + 2d.) (42)
- +
1 2k L 91 - v) L 2

(1)

where d1 and d2 refer to the normalized coefficients d(1" and d2 which correspond

respectively to unit pressure and sinusoidal loading on the boundary r = a.

Thus the stress intensity factor can be written generally as

, 3
Ky~ 1 )(f)z 2*2 (34, 2d,] (43)
- v

for the plane strain case.

The generic coefficients d1 and d2 were determined numerically by least squares
technique (see Appendix B). For this configuration,

d, = 0560764
d2 = -0.913788

4 RESULTS
The key results of the benchmark problem are the following two simple expressions
which give estimates of the error in the steady state temperature and the associated

thermally induced stress intensity factor:

. o E
ToT, s 0R a (@4

aEo E
K, = 0231 —— (—Li’)2 a%/? (45)

oo
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for Poisson’s ratio equal to 0.3. Applying these results to the specific data
generated by the thermal mechanical fatigue tests in reference 1, it is shown that the
effect of the current on the local temperature, and consequently thermoelastic stress

intensity factor, can be quite significant.

The materials used for high-pressure compressor and turbine disks and spacers in
the Air Force F100 engine are high strength nickel-base alloys IN100 and Astroloy
[1]. Fatigue data in [1] were provided for IN100. The temperature range of the
tests is between 500 and 1200°F. Materigls properties data for IN100 are listed in
Table 2 for three temperatures: 70, 600 and 1200°F. Under the assumption that the
sinusoidal variations of heat flux (current) and temperature are in phase (steady state
thermal analysis), the maximum volitage corresponds to the maximum temperature.

Thus, the 1200°F data were used for calculating the magnitude of K.

The stress intensity factor in the thermal-mechanical fatigue tests at termination,
according to [1], is approximately 80 ksi Vin. A significant error, then, would be
about 10 ksi JTF (> 10%). Using the above expression and a specimen length of 1.5
in, this degree of error would require an applied voitage of only 0.65 V (for a critical
crack length of 0.3 in). This small voltage prompted further investigation during
which it was learned that the actual voltage drops measured across the test
specimens were less than 0.4 V [27]). (Using the upper limit of the 0 - 3 V range
quoted in [1] would yield an electric current-induced stress intensity in this material
of greater than 150 ksi Ji—m!) Using a revised voltage range of 0 - 0.4 V and the
materials data in Table 2, the most severe test conditions would yield a current
induced stress intensity of approximately 3.5 ksi vin. This value would not be
expected to cause significant errors in the experimental methods that are presently

used for measuring crack growth.

However, the expression for stress intensity factor is strongly dependent on crack

5/2). Thus, a slight extension of the critical crack length can change the

length (as a
previously relatively small errors in K to significant ones. For example, extending
the critical crack length from 0.3 in. to 0.4 in. results in an approximate 10% stress

intensity error when the same upper limit on voltage (0.36 V) is applied.

The simple expression for current induced stress intensity presented above offers
the advantage that it can easily be applied to different materials. Due to variations

in materials properties, particularly electrical and thermal conductivity, small voltages

may have pronounced effects on the electric current induced K for other materials.
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Table 3 lists several commercially available high-strength nickel alloys and their
compositions for comparison. Some of these alloys are used in gas turbine
manufacture. Pertinent materials properties for each of these alloys are listed in
Table 4. The room temperature and 600 °F data for IN100 were used to calculate
stress intensity estimates for comparison to those materials listed in Table 4.. The
ratios of K to the appropriate temperature value of K for IN100 are also listed in the
table. It is noted that the stress intensity estimates of all materials listed are
greater than that of IN100. It is possible that the resistivity of IN100 as listed
{calculated from data obtained during the fatigue testing) is greater than the actual
value due to equipment configuration and testing error. This would suggest that the
actual stress intensity error is significantly greater than the 5% previously stated,

possibly even twice as high.

Displacements at the crack edge were calculated to compare with test observations.
The detailed displacement analysis is given in [35]). The analysis reveals a small
crack opening displacement of approximately 0.0001 in. These results are consistent

with the crack opening displacements measured on test specimens.

5 DISCUSSION

The use of a benchmark or model problem to estimate errors in stress intensity
factors and local temperatures in thermal-mechanical fatigue testing which uses large
electric currents for heating has shown that this mode of testing results in a more
severe stress state than if conventional heating methods are used. The reason for
the more severe stress state is that the application of a constant voltage across a
cracked specimen results in a singular current and, consequently, a singular heat
source. The singular heat source does not result in a temperature singularity,

however, so the temperature remains bounded at the crack tip.

The relative discrepancy between conventional heating fatigue testing and resistance
heating fatigue is quite dependent on crack size (as a%?) and materials properties:
primarily thermal and electrical conductivity and linear thermal expansion. Materials
exhibiting low electrical resistance and high thermal expansion are, in general, more

susceptible to this mode of thermal loading.

Simple expressions for estimating the contribution of electric current to the stress
intensity factor and local temperature field were developed. These expressions are
estimates in light of some basic assumptions made during problem formulation. The

validity and consequence of some of these assumptions will be discussed here.




e

o)
S

17

Beginning with the electric potential problem, we first assumed that skin effects

7

(the concentration of electric current near surfaces) can be neglected. This allows
the problem to be configurated as one in two-dimensional plane strain. In reality,
however, the skin effect is known to be important in some cases. If the skin effect
is important in the present system the consequence is a hotter surface due to the

- e
ALt

higher current density in that area. One example where the skin effect is important
is in a cracked plate with uniform applied magnetic field [34]. The increase in
current density uniformly from the center to the outer edge in this case was
determined by finite element to be approximately 20%. It is possible that this edge
1§ effect may be related to the shear lip formation observed in some of the iatigue
specimens in that K could be higher near the surfaces of the specimens.

-

Secondly, the assumption that higher order terms in the electric potential series

TE R Y

T e

expression can be neglected when calculating the heat source induces an error when

s

calculating the stress intensity factor. The trouble with including more than a limited
number of terms in the series is that the problem would then have to be solved
completely numerically. By using the current approach, relatively simple expressions
were derived for the temperature error and the current induced stress intensity which

YV Y

may be easily evaluated for any material. However, these results are not exact and

only provide an estimate of the magnitude of this effect.

It is noted again that although the greater crack growth rates are observed in the

X

in-phase testing, it is the out-of-phase test samples that exhibit the anomalous crack
growth behavior. Time histories of temperature and electric current that were taken
i during a crack growth test [27] are plotted in Figure 5. It is apparent from this data
i:. that the assumption that the current and the temperature are in phase is inappropriate
: under actual test conditions. In fact, it is clear from the phasé lag between current

and temperature that thermal transients play an important role in these cases.
! Moreover, the temperature information in the figure may be used to estimate the
relative magnitude of the time dependent term in the heat equation. Averaging over
a circle of radius a, the heat flux generated by the electric current {15 °F/sec) is of
comparable magnitude to the thermal transient term (12 °F/sec). This indicates that
L the assumption of steady state in the thermal analysis should be reconsidered and
D that transient thermal effects should be taken into consideration in order to

i accurately relate analyses to the laboratory situation.

) in conclusion, a first estimate to the role of electric current in thermal fatigue tests
! has been obtained. It was calculated under the assumption that the singular heat fiux
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term would dominate the near field behavior at the crack tip. Appropriate linear
differential equations were solved analytically up to the point in the thermoelastic
problem where the boundary conditions had to be satisfied. A numerical technique

based on a least squares approach was used to satisfy these constraints.

Since little work has been done in this area the resulting solution is fundamental in
that it may be easily used to establish thermal stresses for a variety of test
configurations. Consequently, it may be readily utilized to assess the validity of
thermal mechanical testing procedures which incorporate resistance heating and

neglect thermoelastic stresses.
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2 Table 1
S Electric Potential Coefficient Values
- Coefficient Number Value
KON (n) (A)
L n
D¢
o~ 0 .970527300
o 1 1.414210000
2 .341726000
Al 3 -.353554000
Y 4 -.341728200
o 5 -.044193700
e 6 .069035320
e 7 -.011048700
8 -.054572040
2 9 -.003452562
AN 10 .028407400
;;: 1 -.001208524
~ 12 -.021641700
% 13 -.000453151
. 2 14 .014980200
b2 15 -.000178091
,:‘_; 16 '.01 1750900
ol 17 -.000072299
o 18 .009123044
Lo 19 -.000030232
. 20 -.007432150
. 21 -.000012750
- 22 .006108524
. 23 -.000005576
- 24 -.005137681
25 -.000002395
- 26 .004368960
o 27 -.000001079
S 28 -.003766370
;ﬁ 29 -.000000430
W 30 .003277960
1 31 -.000000251
& 32 -.002879890
"3._ Notes:
:': 32 ngd - =
. E = Co + z Cn "2 cos 3 )
N n=1
]
o E. (2-n2
&::: Cn = An T a for n = 0,1,2,3,...
e.g.,
h Ea E E
Q C_ = 0.9705273 -2, —2 in voltslin; C, =-f2a -2
~ o L L ! L
)
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Table 2
Properties of IN100

Temperature Linear -Thermal Expansion Thermal Electrical Young's
Coefficient, from 70° Conductivit Resistivity Mogulus
(°F) (10™° in/in/°F) Btu-in/hr-ft°-°F)  (uQ-cm) (10° psi)
RT 6.8(1'2) . 80(1) 195(2,3) 29.5(1)
600 75" 100'" 208" 27.0®
1200 g.o'" 130'" 220%¥ 24.0'%%¥
Notes:
1. Aeronautical  Vest-pocket Handbook, P&WA Publication, July 1979,

p. 106-107.

2. Extrapolated.

3. Calculated from data obtained from J. Warren.

|
|
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A
o Table 3
_.l‘?'c Major Constituents of High Strength Nickel Alloys
L.
-
A‘j (%)
Material Ni Cr Co Fe Other Reference
IN100 55 12.4 18.5 0.3 {3Mo.4 Ti,BAl) 1
Nickel 100 - - - - 28
K Monel 63-70 - -- 2.0 {(~ 25 Cu) 28,29
Monel 63-70 - - 2.5 w 30 Cu) 28,29
Hastelloy B 60 1 - 6.0 (28 Mo) 28-30
Hastelloy C 60 16 - - (18Mo,4W) 28-31
"Incone}” 72 16 - 8 28-31
inconel 600 (Ni+Co)=72 16 - 8 32
Inconel 718 55 19 1 15 (5 Nb) 32
R Incone! X750 (Ni+Co)=70 15 - 6.5 32
K Incoloy 800 33 21 - 42 32
'Y
' -
nﬁ'
D
¢y
o
N3
b
3
o
.
*4
, ’n
N
k)
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o5
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1
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Table 4

2 Materials Properties of Several Nickel-Base Alloys

[ Linear

e Thermal

L Expansion Electrical Thermal Young’'s 2

:w Material Cogf6ficient Res_igtivity Conductivnt¥ Mogulus Temp. K/Kw

L (107" infin/°F)  (107° Q-cm) (Btu-in/in-ft“-°F) (10° psi}  (°F)
Ni 7.4 6.84 637 30 70 3.9
K Monel 7.8 58.3 130 26 70 2.0
Monel 7.8 48.2 173 26 70 1.89
Hastelloy B 5.5 135 78.2 28.5 70 1.16
Hastelloy C 6.3 133 86.9 28.5 70 . 121
inconel 6.4 98.1 - 104 3 70 1.51

_.ﬂ‘ Inconel 600 5.8 103 103 30 70 1.28

o 7.9 107 133 27.5 600 1.57

oY 8.6 113 172 24.8 1200 1.6

2 Inconel 718 7.8 125 77 29 70 1.83

s 8.0 129 1M 26.7 600 1.53

N 8.6 134 147 23.7 1200 1.54

Inconel X750 6.9 121 83 31 70 1.66

. " 7.5 126 109 (28.5) 600 1.6

N 8.4 131 143 255 1200 1.2

KX Incoloy 800 8.7 98.8 80 28.4 70 2.4

= 9.0 11 115 25.4 600 1.8

9.6 124 152 22.3 1200 1.6
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ZKIN refers to the stress intensity factor calculated for IN100.
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Wi Figure 1. Thermal Stress Component Geometry Near Crack
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3 a. Mapping Geometry ‘ b. Problem Geometry

?, Figure 3. Relation of Schwarz-Christoffel Mapping Geometry to
0w the Problem Geometry
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Figure 4. Heat as a Function of Position for Various Numbers
of Terms in the Fourier Cosine Series
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Figure 5. Time History of Temperature and Electric Current
Measured During Crack Growth Tests
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g Appendix A

DETAILS OF THE THERMOELASTIC SOLUTION

\ From

) and

o E a
rd va - _02_'
RV 2k (L) r

A\ the governing equation can be written as

oaE
‘ "§ Vi = ——— (E /L)
\' 2k(1 = V) °

I -

where ® must satisfy the traction conditions of (33} and (34). Using the principle of

linear superposition, let

KT
Y =
: ¢$ <l>H + 4>P
s
' where <I>p is the particular solution satisfying

W
s %, B
K} Vi = .
3 4 ) P r
LR
}5 and ¢H is the homogeneous solution satisfying
3‘ u-'
3 L 4 -

Vig, = 0.
i

A solution for <I>P is

J°
]
.Y o
: ,, ® Br3
"‘) L] P B  —e———
=X 9
[MX
,_‘ng:‘ The homogeneous solution, ¢H can also be broken into component parts:
it |
,'.::
g
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where 1>H2 is the Williams’ eigenfunction solution (<I>H2 automatically satisfies (34) and
its coefficients are numerically determined such that (33) is satisfied in a (east

squares sense) while 1>H1 frees up the crack faces from the tractions imposed by ¢p.

By separation of variables, an expression for 4>H1 is:

Br3

q’._“ = ? cosf

It is noted that the combination ¢p + <PH1 satisfies the crack face conditions:

3%
00=5—rr*ﬂT=ﬂTat0=iﬂ
3 , 109

rr8=-§(r—a—0>=0at0=tn

The appropriate boundary conditions for 1>H2 are derived from

I 190 132

a)arr=.=(;§;*;za—0~z)[¢P*¢H1*¢H2]+ﬂT=ﬂT

or, after incorporating the above expressions for <l>p and <l>H and evaluating at r = a,

1 1824>H2| Ba 5+ 20050)
r Tor 12 9% r=a " g T ecOS

or,

d 10¢

- — (- H2
orr 98

2
) = - — Ba sinf
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::. Thus, the Williams’' eigenfunction solution must satisfy boundary conditions of the
[ form:
39
:)
A a = - — (3 + 2cosf)
e r r=a 9
Xy

A | Ba
e T = - — 2 sinf

\ rf r=a 9
[
- In order to generalize and further simplify the numerical evaluation of coefficients,
:: Dn, in the eigenfunction solutions, ¢H2, these coefficients can be expressed as the
:",( sum of normalized coefficients dI(") and dz(") which correspond to unit pressure and
N

N sinusoidal loadings, respectively, on the boundary r = a. In other words, if on the
AY)
N boundary r = a,

-

\j 00 00

s () = > dx@=1 (g => d" 6 =0
| s r 3 ey 1 n r 1 Lee 1 n
"
: and

00 - 00

o = n = - {n) . e

o {o) z d,” X (f) = cosf, (r o) Z d,” y6) = sind,
o 2 n=1 2 n=1
:.‘9,, For xn(e) and yn(ﬁ) representing the Williams' eigenfunction series for o, and 7.6
» respectively, the coefficients Dn in (40) are such that

.
.J.
S5 Ba
" tn-2y2 _ _ "~ (n () _

, Dn a = 5 (3d1 + 2d2 ), n=1.2,..00.
"‘1
. Numerical calculation of d1(") and dz(") is discussed in Appendix B.

%

f-: Substituting for B and dividing by a_”2, the singular coefficient, D1, becomes
.‘-'
) g E aE

: 1 2k L s(1-v) 1 2
*
4
L
-
N
>
o
“'
:»‘:3
e

"at - .

»
W

LI

e TSI PO T DR e e P o T L S A T T e
d N . . ' L) LR N [ - 1 \i-_ . o« . EY
P N o R S A ARE RSN N

4y 't e
U] O )
uf,'g‘,'q";“»?."t‘fﬁ,!

s



35

Appendix B

METHOD OF LEAST SQUARES: CALCULATIONS AND CONVERGENCE CHECKS

The method of least squares was used to determine the coefficients d,‘"’ and dz(")

so that the appropriate boundary conditions presented in Appendix A are satisfied.
The least squares method constructs a series representation which fits the boundary
conditions over the interval of interest with a minimum of error. If the boundary

conditions are written
o, = £(4), Tg " glf) onr = a,

the error involved in summing 0. and LY at the boundary r = a is3

n .
« = tS{[ (o) - i dy @] +[ o0 - i dy (0]} d6
n=1 n=1

where y () and y () represent the Williams' eigenfunction series for ¢ and 7 ,,
n Yn r rf

respectively.

In order to minimize ¢ with respect to each coefficient dn, take

de ( %

53" 0= 5{ -2[ to - FZ dy (0] v (60
00

-2[ g0 -> dy ] 0} a8
n=1

or,

” 00
00
§[f(g)y,m + 9(9’7,“‘9”"9 = Z dn §(¢nym + 7n7m)d0

n=1

If the array | is defined as
nm

3The calculations must be performed separately for the unit pressure and sinusoidal loading conditions. The
method in the text describes the %neral P[,‘,-’)“d”’e to be followed in both cases. For ease of notation, we
have used dn in ptace of either d‘ or d2 in this appendix.
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T~y and the constraint vector components as

-I‘\‘(;,

N ”

e F (£(6) (6)y_)df

= +

® m ¥m * 99y,

Yoe:
. - !
ndoy Then the error is minimized in a least squares sense if !
.

bl

i .‘n N

by’

_;. di__=F as N> oo
: n nm m

!.l"' n=

_|’l

A%

) This equation can be solved for the unknown coefficients dn for various values of N
o

g:!: using a standard LU-decomposition method.

l}‘ -

A To check the numerical convergence, three tests were performed:
S

e, 1. Stresses and errors were evaluated when functions f = 1, g = sin28 were
333 inputted. Results for the cases N = 4 and N = 16 are plotted in Figures
-’ B-1 and B-2 along with the known functions for comparison. Excellent
correspondence between the known functions and the series

o representations for N = 16 is noted, while the case N = 4 still results in
o rather large error values.

o

X

o 2. The coefficients were calculated for a test case in which the exact
coefficients were known. These were used to generate boundary

; conditions to see if the same coefficients were rendered. Ressults are
* tabulated in Table B-1 and show error values on the order of 10 ~.

N

.;:. 3. The coefficients were used to compute the boundary stresses to compare

ﬁ'\' with the theoretical boundary conditions. Figures B-3 and B-4 show the

’._ results for four values of N. The results show that the boundary
conditions are satisfied quite well for N as small as 16. Excellent

-{\: agreement is noted for higher values of N.

.N

The convergence checks illustrate quite rapid convergence and excellent behavior of
the functions with approximately zero error accomplished with as low as 32

coefficients.
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o Table B-1

i NUMERICAL CONVERGENCE CHECK #2

"y Crack Size = .075 Crack Size = 0.1
) Input Values Output Values Input Values Output Values

d 2.486730 2.486710 4.420850 4.420810
*:} d 1.313280 1.313270 2.334720 2.334700
b oy d -6.091920 -5.091870 -9.052300 -9.052190

KL v d 0.383660 0.383655 0.682062 0.682052
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